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Abstract – Recent advances in deep learning have shown that 
Binary Neural Networks (BNNs) are capable of providing a 
satisfying accuracy on various image datasets with significant 
reduction in computation and memory cost. With both weights 
and activations binarized to +1 or -1 in BNNs, the high-precision 
multiply-and-accumulate (MAC) operations can be replaced by 
XNOR and bit-counting operations. In this work, we propose a 
RRAM synaptic architecture (XNOR-RRAM) with a bit-cell 
design of complementary word lines that implements equivalent 
XNOR and bit-counting operation in a parallel fashion. For 
large-scale matrices in fully connected layers or when the 
convolution kernels are unrolled in multiple channels, the array 
partition is necessary. Multi-level sense amplifiers (MLSAs) are 
employed as the intermediate interface for accumulating partial 
weighted sum. However, a low bit-level MLSA and intrinsic 
offset of MLSA may degrade the classification accuracy. We 
investigate the impact of sensing offsets on classification accuracy 
and analyze various design options with different sub-array sizes 
and sensing bit-levels. Experimental results with RRAM models 
and 65nm CMOS PDK show that the system with 128×128 sub-
array size and 3-bit MLSA can achieve accuracies of 98.43% for 
MLP on MNIST and 86.08% for CNN on CIFAR-10, showing 
0.34% and 2.39% degradation respectively compared to the 
accuracies of ideal BNN algorithms. The projected energy-
efficiency of XNOR-RRAM is 141.18 TOPS/W, showing ~33X 
improvement compared to the conventional RRAM synaptic 
architecture with sequential row-by-row read-out. 

I. INTRODUCTION 
Deep neural networks (DNNs) have shown remarkable 

performance in various intelligent applications including 
computer vision and speech recognition. However, the high 
demands on memory storage capacity and computational 
power make it unsuitable to implement the state-of-the-art 
DNNs on resource-limited devices such as embedded systems 
and mobile devices. For example, ResNet-50 [1] has 25.5M 
parameters and requires 3.9G high precision operations to 
classify one image and these numbers are higher for even 
deeper networks. Thus, it is prohibitive to directly implement 
the entire DNN on-chip, and the intensive data movements 
between on-chip processor and off-chip memory (e.g., DRAM) 
access becomes the bottleneck of the system performance and 
energy efficiency. Recently, deep learning researchers have 
demonstrated that Binary Neural Networks (BNNs) [2-3] are 
able to achieve satisfying classification accuracy on 
representative image datasets (e.g., MNIST, CIFAR-10, and 
ImageNet). The memory storage of these BNNs is significantly 

reduced since both the weights and neuron activations are 
binarized to -1 or +1, as compared to floating-/fixed-point 
precision. Furthermore, high-precision multiply-and-
accumulate (MAC) operations can be replaced by bit-wise 
XNOR and bit-counting operations, drastically reducing the 
computational resources as well. Therefore, BNNs provide a 
promising solution for on-chip implementation of DNNs. 

In hardware accelerators of DNNs, SRAM is commonly 
utilized to store synaptic weights in CMOS ASIC designs [4]. 
Nevertheless, a SRAM cell consumes more than 200 F2 (F = 
technology feature size) in area, leading to a limited capacity of 
on-chip weight storage. To enhance on-chip storage, 
researchers have proposed using embedded non-volatile 
memories (eNVMs) with much less area (<10F2) such as 
resistive random access memory (RRAM) [5] and phase 
change memory (PCM) [6] to implement “analog” synaptic 
weights. Despite holding great advantages on area-efficiency 
and static power reduction compared to SRAM, the non-ideal 
analog weight characteristics (e.g., weight update nonlinearity, 
limited dynamic range and precision) introduce significant 
accuracy degradation [6-7]. Hence, it is more practical to use 
technologically more mature binary eNVMs that have been 
demonstrated at Gb chip-level by industry as a near-term 
solution [8]. The prior work in [9] experimentally 
demonstrated BNNs (a two-layer perceptron) on a 16Mb 
RRAM macro chip with row-by-row sequential read-out of 
binary RRAM cells, showing ~96.5% accuracy on MNIST 
dataset. To get rid of the row-by-row sequential read-out, the 
pseudo-crossbar array with 1-transistor-1-resistor (1T1R) or the 
true crossbar array could allow fully-parallel read-out by 
activating all the word lines (WLs) simultaneously for the 
weighted sum (or matrix-vector multiplication) operation [10-
11].  

Theoretically, the binary activation in BNNs could allow 
using 1-bit sense amplifiers (SAs) instead of analog-to-digital 
converters (ADCs) to serve as the binary neuron. However, due 
to the intrinsic offset of the SAs introduced by process 
variation, the sensing failure becomes intensified when the 
column current increases [12] when multiple WLs are activated 
in the parallel read-out scheme. This may substantially degrade 
the classification accuracy as the threshold of binary neuron 
may differ from the ideal value in algorithms, leading to a 
constraint on the column length or the array size. To overcome 
this design challenge, array partition has to be adopted to split a 
large-scale matrix into multiple small sub-arrays. In this way, 
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ADC-like multi-level sense amplifiers (MLSAs) are exploited 
to generate the partial sums of sub-arrays, which are eventually 
added up to be the final sum for binary activation. The previous 
works in [13-14] presented RRAM based implementation of 
BNNs, however to the best of our knowledge, the practical 
design issues such as the impact of sensing offset and design 
tradeoffs related to the size of sub-array and bit-level of MLSA 
have not been discussed in those works. In this paper, we 
propose a parallel RRAM synaptic architecture with a bit-cell 
design of complementary word lines that implements XNOR 
and bit-counting operations. We benchmark the performance of 
the proposed architecture and analyze the tradeoffs between 
different design options. The contribution of this work 
includes: 
• A parallel architecture (XNOR-RRAM) that integrates 

RRAM synaptic array and MLSA with optimized array 
partition for implementing deep BNNs of arbitrary size. 

• Analysis of different sizes of RRAM sub-array and different 
bit-levels of MLSA by Monte Carlo simulations using 
TSMC 65nm CMOS PDK.  

• With balanced tradeoffs, the optimized system with 128×128 
sub-array size and 3-bit MLSA can achieve accuracies of 
98.43% for MLP on MNIST and 86.08% for CNN on 
CIFAR-10, showing 0.34% and 2.39% degradation 
respectively compared to the accuracies of ideal BNN 
algorithms. 

• Compared to a baseline design with sequential row-by-row 
read-out, the proposed parallel XNOR-RRAM architecture 
achieves 141.18 TOPS/W energy efficiency with an 
improvement factor of ~33X. 
  The rest of this paper is organized as follows: Section II 

proposes the XNOR-RRAM bit-cell array and architecture 
design, and discusses the practical design issues including the 
impact of SA offset on accuracy, the size of sub-array, and the 
bit-level of MLSA. Section III presents the benchmark results 
of the classification accuracy on MNIST and CIFAR-10 
datasets considering the impact of hardware constraints and 
non-idealities. Section IV compares the performance on area, 

latency, and energy between sequential and parallel XNOR-
RRAM architectures. Section V concludes the paper. 

II. PARALLEL XNOR-RRAM ARCHITECTURE DESIGN 
A. Binary Neural Network (BNN) 
 In a BNN, both the weights and neuron activations are 
binarized to -1 or +1. Therefore, multiplications between 
activations and weights can be simplified as XNOR operations 
and accumulation of the products is equivalent to bit-counting 
operation. In this paper, we trained BNNs using the algorithm 
proposed in [2] on the Theano platform. A multilayer 
perceptron (MLP) with a structure of 784-512-512-512-10 and 
a convolutional neural network (CNN) with 6 convolution 
layers and 3 fully-connected layers are trained for evaluations 
on MNIST and CIFAR-10 datasets, respectively. Table I 
presents the corresponding classification accuracy with floating 
point (FL) precision and binary precision for these two 
networks. For MLP on MNIST, the accuracy slightly drops 
from 99.00% to 98.77%; for CNN on CIFAR-10, the accuracy 
slightly decreases from 89.98% to 88.47%. Such minor 
degradations have also been observed in state-of-the-art BNN 
algorithms [2-3]. 

B. RRAM Based Synaptic Array 
      Fig. 1 shows the proposed bit-cell design for XNOR-
RRAM implementation in (a), the diagram of sequential 
RRAM and parallel XNOR-RRAM architectures in (b) and (c), 
respectively. In this work, we only consider the pseudo-
crossbar with 1T1R array since the two-terminal threshold 
switch selectors for true crossbar array are currently not 
technologically mature for large-scale integration. After offline 
training, one-time write operation is performed to load all the 
binary weights to the array for inference. The convolution and 
the vector-matrix multiplication in fully connected layers are 

TABLE I. CLASSIFICATION ACCURACY IN DIFFERNET CASES 

Network Dataset FL Precision Binary Precision 
MLP MNIST 99.00% 98.77% 
CNN CIFAR-10 89.98% 88.47% 
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Fig. 1. (a) The customized bit-cell design for XNOR implementation. (b) The diagram of conventional sequential RRAM synaptic architecture. 
(c) The diagram of proposed parallel XNOR-RRAM architecture.  



essentially the same operations if a 2D convolution kernel is 
unrolled into a 1D column [15]. 

      Fig. 1(a) presents the principle of the proposed bit-cell 
design for XNOR-RRAM implementation. For each synaptic 
weight, -1 is represented by two cells where the top one is in 
HRS and the bottom one is in LRS. The reversed pattern is 
used for +1. For the WL input pattern, two adjacent WLs for 
each weight-cell are in complimentary state where (0, 1) 
represents -1 and (1, 0) represents +1. In this way, the value of 
the current that flows through each weight-cell during read-out 
is dependent on the combination of WL input pattern and bit-
cell pattern. For example, when input vector is -1, for the cell 
of weight -1, the cell in the activated row is in LRS, leading to 
a large cell current, which can be regarded as a bit-wise XNOR 
output of “+1”. For the cell of weight +1, the cell in the 
activated row is in HRS, leading to a small cell current, which 
can be regarded as a bit-wise XNOR output of “-1”. When 
multiple WLs are activated in parallel, the LRS-cells will 
dominate the total bit line current (IBL) if the on/off ratio of 
RRAM is sufficiently large. Consequently, IBL will be 
proportional to the bit-counting results equivalent to the 
number of LRS-cells along the column. For example, 50% 
“+1” and 50% “-1” will lead to a final weighted sum of 0. 
Assuming the column length of the sub-array is 64, the sum of 
0 can be mapped to the IBL = 32 activated LRS-cells. 
Therefore, the reference current (IREF) for the current sense 
amplifier (CSA) could be set to 32 LRS-cells’ current for the 
binary neuron activation. If IBL is smaller than IREF that 
generates a CSA output “-1”, it represents that there are more 
“-1” than “+1” along the column, and vice versa. 

      For the sequential RRAM design in Fig. 1(b), the encoded 
input neuron vector is fed into WL decoder, and only one WL 
is activated in each read-out operation. During the read-out 
operation, VBL is biased to be ground, CSA imposes current on 
the selected bit line (BL) and compares IBL with the fixed IREF 
to determine the output. For each weight column, there are 
MAC units such as adder and register pair at the end of the 
column for row-by-row summation and partial weighted sum 
storage. In the end, the final weighted sum goes through a 
digital comparator to generate 1-bit neuron output (+1 or -1). 
For the parallel XNOR-RRAM design in Fig. 1(c), instead of a 
normal decoder, a WL switch matrix is designed to activate 
multiple WLs simultaneously depending on the input vectors to 
enable the parallel read-out operation. The parallel XNOR-
RRAM architecture leverages the analog current summation to 
effectively realize the MAC operation, thus the adder/register 
periphery of the sequential row-by-row scheme is eliminated. 

C. Impact of CSA Offset on Classification Accuracy 
      Theoretically, a 1-bit CSA can serve as the binary neuron 
for each column in parallel XNOR-RRAM to generate the 
binary neuron output. However, due to the intrinsic offset of 
CSA, the sensing pass rate (percentage of accurate sensing 
results) becomes worse when IBL increases (as cell currents are 
summed up for a large array), which may bring significant 
accuracy degradation as the threshold of the neuron may differ 
from the ideal value in algorithms. In this section, we perform 
Monte Carlo (MC) simulations using TSMC 65nm CMOS 
PDK to investigate the impact of 1-bit CSA offset on 

classification accuracy of the MLP, using a 512×512 RRAM 
array. A current-latch based CSA [12] is employed, comprising 
precharge PMOS, cross-coupled pair, and pull-down NMOS as 
shown in Fig. 2(a). During the precharge phase, CSA imposes 
large precharge current to raise the voltage on BL/BL_B to 
drive IBL and IREF. When the difference between IBL and IREF 
reaches its maximum, the precharge transistors turn off and the 
cross-coupled pair compares the current difference to 
determine the output value. The offset of CSA is mainly due to 
the trip-point voltage mismatch between P1-N1 and P2-N2 that 
is caused by process variation. In the simulation setup, 
LRS/HRS resistance is assumed to be 200K /200M . The 
waveform in Fig. 2(b) shows the case of sensing 40 LRS-cells 
(BL) against 32 LRS-cells (BL_B) as an example. As IBL is 
larger than IREF, the voltage at node Q_B drops to the trip-point 
voltage earlier than node Q, raising node Q toward VDD. As a 
result, DOUT remains at VDD while DOUT_B drops to “0”. Since 
IBL/IREF become much larger due to parallel read-out, the read 
access time is observed to be less than 1ns. As aforementioned, 
the bit-counting results can be mapped to different number of 
activated LRS-cells in the corresponding column, hence the IBL 
with 256 activated LSR-cells represents a sum of 0 in this case 
(for a 512×512 array size). For the illustration purpose, here we 
only perform 21 sets of simulation covering bit-counting 
results from “-20” to “+20”. For each set, 10,000 MC points 
are simulated by Cadence Spectre using TSMC 65nm PDK. 
Fig. 3(a) shows the sensing pass rate of different bit-counting 
values, where sensing failures may occur due to the offset. 
Even with “-20” or “+20” difference in the bit-counting value, 
the sensing pass rate is less than 80%. As there are 
512+512+10=1,034 binary columns in total for the MLP, every 
1,034 MC points are randomly selected as one group each time 
to generate 10,000 groups of offset patterns. Then we perform 
the inference on MNIST dataset with the generated offset 
patterns. Fig. 3(b) shows the distribution of the classification 
accuracy from 10,000 MC runs. The average accuracy is only 
15.04%, which is definitely unacceptable. Therefore, we 
propose to split a large weight matrix into small ones to 
maintain a good sensing pass rate of CSA. 

D. Array Partition for Implementing Arbitrary Network Size 
      In this section, we analyze different design options with 
array partition. Firstly, the size of the sub-array is a key design 
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Fig. 2. (a) Schematic of CL-CSA. (b) Simulation waveforms of 
sensing 40 LRS-cells (BL) against 32 LRS-cells (BL_B). As IBL > 
IREF, DOUT remains as “1” while DOUT_B drops to “0”. Read access 
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parameter that may affect the classification accuracy and the 
cost of system. After the matrix splitting, each small matrix 
needs to generate a partial sum, which will be added up to 
obtain the final sum for binary activation. Thus, the precision 
of the partial sum may affect the value of the final sum and 
then influence the classification accuracy. As a result, ADC-
like MLSAs are employed to generate partial sums with fixed-
point precision (larger than 1-bit). To minimize the 
quantization error of the partial sums, we propose to perform 
nonlinear quantization where quantization edges (or references) 
are determined via Lloyd-Max algorithm [16] according to the 
distribution of the partial sums. For instance, the distribution of 
the partial sums in the MLP is shown in Fig. 4. 7 quantization 
edges (or references), and 8 quantization levels acquired from 
Lloyd-Max algorithm are also annotated. Due to reduced 
quantization error, nonlinear quantization achieves better 
accuracy than linear quantization, given the same number of 
quantization levels. For example, the CNN for CIFAR-10 
achieves test accuracy of 86.68% with nonlinear quantization 
and only 13.90% with linear quantization for 8 quantization 
levels (or 3-bit MLSA).  

  A generic system diagram that implements one BNN layer of 
arbitrary size is shown in Fig. 5 (sub-arrays are assumed to be 
64×64). MLSAs in sub-arrays generate digital outputs with 
fixed-point precision, which then go through a thermometer 

encoder and look-up table (LUT) to be converted to the 
corresponding quantization values as partial sums. Adder trees 
sum up the partial sums to be the final weighted sum, which 
then goes through the binary activation to generate the neuron 
output. Here we investigate the cases for the array size of 
32×32, 64×64, and 128×128 with MLSA bit-level ranging 
from 1 to 4 (i.e., 2, 4, 8, 16 quantization levels). The software 
simulation results for each case are shown in Fig. 6. It can be 
observed that for both MLP and CNN with 3 different sub-
array sizes, the classification accuracy saturates when MLSA 
bit-level reaches 3-bit. In the meantime, a MLSA bit-level of 2-
bit can also provide >98% accuracy (degradation of <1%) for 
MLP on MNIST when sub-array size is 32×32 or 64×64. 
Therefore, we select the following three options as benchmarks 
to analyze the design tradeoffs: (1) option{64, 2}: sub-array 
size = 64×64, MLSA bit-level = 2; (2) option{64, 3}: sub-array 
size = 64×64, MLSA bit-level = 3; (3) option{128, 3}: sub-
array size = 128×128, MLSA bit-level = 3. 

III. BENCHMARK RESULTS ON MNIST AND CIFAR-10 

A. Considering MLSA Offset and RRAM Variation 
 In this section, we benchmark the performance of the 

selected 3 design options on MNIST and CIFAR-10, 
considering the impact of MLSA offset and RRAM cell 
resistance variation. The resistance variation is assumed to 
exhibit Gaussian distribution with a mean of 200K  and a 
standard deviation of 3K . The RRAM LRS resistance 
distribution could be tightened by the write-verify technique in 
one-time programming before the inference. The approach 
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mentioned in Section II.C is employed to produce the offset 
patterns. For each option, 30,000 MC points are generated. Fig. 
7 presents the sensing pass rate of the bit-counting value in the 
range of [-20, 20] for the option {64, 3} as an example. In this 
case, gray dash lines indicate the position of the corresponding 
7 sensing references. The sensing pass rate is relatively low if 
the bit-counting value is close to a reference due to a small 
sensing margin. When the difference between the bit-counting 
value and the reference is large enough, e.g., when bit-counting 
value is larger than 20 or less than -20 in this case, the pass rate 
can achieve 100%. 

B. Benchmark Results of MLP on MNIST 
     For the evaluation purpose, here we assume no array-reuse 
during the inference as all weights are stored on-chip. Thus, 
different numbers of sub-arrays are needed when the sub-array 

size varies. Table II summarizes the number of sub-arrays in 
different layers (except layer #1). Based on 30,000 MC points, 
10,000 sets of offset patterns are produced. Then we redo the 
software statistical simulations with offset information for the 
selected 3 options. Fig. 8 shows the accuracy distributions from 
10,000 MC runs. The option {64, 2} can only achieve an 
average accuracy of 95.81% while the BNN algorithm 
accuracy is 98.77%, showing a degradation of 2.96%. Among 
the 3 options, the option {64, 3} shown in Fig. 8(b) achieves 
the best average accuracy of 98.56% with a standard deviation 
of 0.11%, showing only 0.21% degradation compared to the 
accuracy of ideal BNN algorithm. For the option {128, 3} with 
the largest sub-array size, the impact of offsets worsened as 
expected, resulting in a degradation of 0.34%. 

C. Benchmark Results of CNN on CIFAR-10 
 As the statistical simulations of CNN on CIFAR-10 are 

much more time-consuming, we only perform the evaluation 
for the option {64, 3} and {128, 3}, considering the results of 
MLP on MNIST in the previous section and software 
simulation results shown in Fig. 6(b). Table III summarizes the 
number of sub-arrays for the implementation of the CNN with 
6 convolution layers and 3 fully-connected layers. For instance, 
kernel size of (128, 3, 3, 3) means that the number of output 
feature map is 128, the number of input feature map is 3, and 
the filter size is 3×3. The accuracy distribution for two cases 
from 1,000 MC runs is shown in Fig. 9. The average accuracy 
of the option {64, 3} and {128, 3} is 86.12% and 86.08%, 
showing 2.35% and 2.39% degradation respectively compared 
to the accuracies of ideal BNN algorithm. 

IV. COMPARISON BETWEEN SEQUENTIAL AND PARALLEL 
XNOR-RRAM 

We customized a circuit-level macro model NeuroSim [17] 
that can be used to estimate the area, latency, and energy 
consumption of hardware accelerators implemented by RRAM 
synaptic arrays. The hierarchy of the simulator consists of 
different levels of abstraction from the memory cell parameters 
and transistor technology parameters, to the gate-level sub-
circuit modules, and then to the array architecture.  

In this work, we estimated the area, latency, and energy of 
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TABLE II. NUMBER OF SUB-ARRAYS FOR MLP ON MNIST 

Layer # Matrix Size Sub-array # 
64×64 

Sub-array # 
128x128 

1 784×512 N/A N/A 
2 512×512 64 16 
3 512×512 64 16 
4 512×10 8 4 

Total N/A 136 36 
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sequential RRAM architecture and parallel XNOR-RRAM 
architecture (3 options) as discussed in Section III.B for 
implementing a 256×256 weight matrix. Table IV summarizes 
the results for each case. As shown in the table, parallel 
XNOR-RRAM greatly reduces the latency by >350X and the 
energy-efficiency could be improved by >20X for all 3 options. 
However, the area overhead is increased, mainly due to the 
duplicated peripheral circuits used to enable all the sub-arrays 
in parallel. Considering the tradeoffs among all the metrics, we 
suggest that the parallel XNOR-RRAM architecture with 
128×128 sub-array and 3-bit MLSA could be an optimal design 
option, which achieves the average accuracy of 98.43% on 
MNIST (degraded by 0.34%) and 86.08% on CIFAR-10 
(degraded by 2.39%), an energy-efficiency of 141.18 TOPS/W 
(improved by ~33X), and a moderate area overhead (increased 
by ~1.4X). 

V. CONCLUSION 
In this paper, a parallel XNOR-RRAM architecture with a 

custom bit-cell design is proposed for efficient BNN inference. 
Array partition is adopted to make it suitable for implementing 
large-scale BNNs. We analyze the impact of SA offsets on the 
classification accuracy for 3 design options selected based on 

the offset patterns generated from Monte Carlo simulations. 
The estimation of the area, latency, and energy for sequential 
RRAM with row-by-row read-out and parallel XNOR-RRAM 
with parallel read-out is performed at 65nm node. Our results 
show that the design option with 128×128 sub-array size and 3-
bit MLSA can achieve an accuracy of 98.43% for MLP on 
MNIST and 86.08% for CNN on CIFAR-10, showing 0.34% 
and 2.39% degradation respectively compared to the accuracies 
of ideal BNN algorithms. If CSA offset cancellation techniques 
(e.g., switch capacitor sampling in [12]) are employed, we 
expect a larger sub-array size could be used with less 
degradation on accuracy. For the current design option for 
parallel XNOR-RRAM, the estimated energy-efficiency can 
achieve 141.18 TOPS/W, showing ~33X improvement 
compared to the conventional sequential RRAM architecture. 
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TABLE III. NUMBER OF SUB-ARRAYS FOR CNN ON CIFAR-10 

Layer # Type Kernel Size  Sub-array # 
64×64 

Sub-array # 
128x128 

1 Conv. (128, 3, 3, 3) N/A N/A 
2 Conv. (128, 128, 3, 3) 36 9 
3 Conv. (256, 256, 3, 3) 72 18 
4 Conv. (256, 256, 3, 3) 144 36 
5 Conv. (512, 256, 3, 3) 288 72 
6 Conv. (512, 512, 3, 3) 576 144 
7 FC (8192, 1024) 2048 512 
8 FC (1024, 1024) 256 64 
9 FC (1024, 10) 16 8 

Total N/A N/A 3436 863 
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Fig. 9. Classification accuracy distribution of CNN on CIFAR-10
from 1,000 MC runs for the case (a) 64×64 sub-array and 3-bit 
MLSA and (b) 128×128 sub-array and 3-bit MLSA. 

TABLE IV. COMPARISON BETWEEN DIFFERENT 
ARCHITECTURES 

Architecture Area 
(μm2) 

Latency 
(ns) TOPS/W 

Sequential RRAM 33,987.7 5036.28 4.23 
XNOR-RRAM {64,2} 75,467.7 12.40 157.64 
XNOR-RRAM {64,3} 83,196.4 12.70 81.79 

XNOR-RRAM {128,3} 46,824.1 13.69 141.18 


